New and Emerging Infectious Forms of Arthritis (and old ones too)

Kevin L. Winthrop, MD, MPH Associate Professor, Divisions of Infectious Diseases, Public Health, and Preventive Medicine Oregon Health & Science University

Disclosures

- Research funding from Pfizer, BMS
- Scientific consultant work for Amgen, Abbvie, Pfizer, UCB, Genentech, BMS, Lilly
- Data safety monitoring boards for RCTs conducted by UCB, Roche, Astellas, Lilly, Janssen, Galapagos

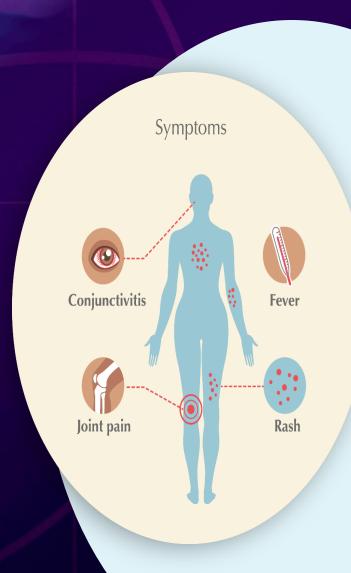
Table 2. Evidence of viral infection in synovial fluid/tissue in various arthritides

Virus	Undifferentiated arthritis	Spondyloarthritis	Rheumatoid arthritis	Osteoarthritis	Crystal-induced arthritis	Trauma
Parvovirus B19	+	+	+	+	_	_
Epstein-Barr virus	+	+	+	+	+	_
Herpes simplex	+	+	+	+	+	_
Cytomegalovirus	+	+	+	+	+	-

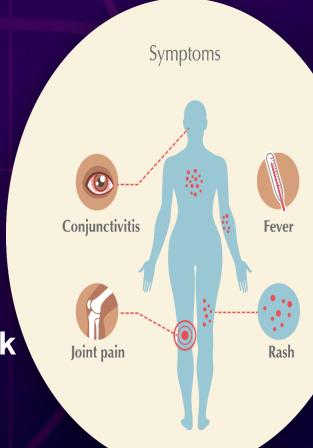
Modified from Stahl et al. [13].

What is Zika Virus?

- Single-stranded RNA virus
- Closely related to dengue, yellow fever,
 Japanese encephalitis, and West Nile viruses
- Primarily transmitted by the bite of two Aedes species mosquitoes
 - Aedes aegypti and Aedes albopictus mosquitoes
- Additional modes of transmission
 - Intrauterine and perinatal transmission (mother to fetus)
 - Sexual transmission
 - Laboratory exposure
 - Probable: Blood transfusion


Aedes aegypti mosquito

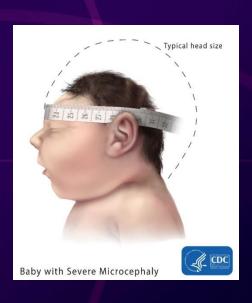
Aedes albopictus mosquito


Clinical Presentation

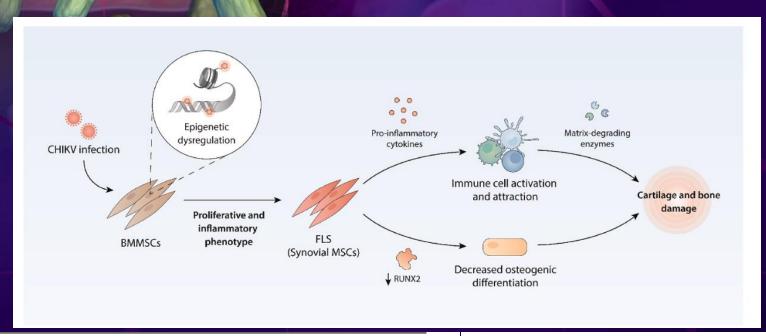
- Clinical illness usually mild
- Most common symptoms
 - Fever
 - Rash
 - Joint pain
 - Conjunctivitis
- Symptoms last several days to a week
- Severe disease uncommon
- Fatalities rare
- Once a person has been infected, likely to be protected from future infections

Zika Clinical Presentation

- Usually mild
 - Fever
 - Rash
 - Joint pain
 - Conjunctivitis
- Symptoms last several days to a week
- Severe disease uncommon
- Fatalities rare
- Infection likely confers future protection


The New STD

- Microencephaly
- Other defects


Alphavirus

- Chikungunya, Ross River
- 48% with arthritis up to 6 months post-infection
 - Small proportion with chronic arthritis
- Rash, fever, edema of face, lft elevation, thrombocytopenia
- Treatment with steroids, NSAIDS, HCQ, TNFi

FIGURE 1: Patient with joint deformities of the hands 6 years after confirmed chikungunya virus infection.

Chronic chikungunya arthritis (CCA) Rheumatoid arthritis (RA)

Similarities

<u>Presentation</u>: small joint symmetric polyarthritis (most commonly). Patients: middle-aged females (most commonly affected

demographic).

<u>Symptoms</u>: fatigue, arthralgias, arthritis, myalgias, and morning stiffness.

<u>Labs</u>: normochromic anemia; thrombocytosis, and elevated ESR/CRP, RF may be reactive.

Radiographic: joint effusions, bone erosions, marrow edema, synovitis, tendinitis, and/or tenosynovitis.

<u>Serum cytokine profile</u>: \uparrow IL-1 β , IL-6, IL-17, and TNF (chronic disease) <u>Synovial cytokine profile</u>: \uparrow IL-1 β , IL-6, IL-7, IL-8, IL-10, IL-15, IL-17, GM-CSF, IFN- α , IFN- γ , and TNF (chronic disease)

<u>Pathogenesis</u>: FLS important in perpetuating inflammation and joint Disability: can be moderate-to-severe (chronic disease)

<u>Therapy</u>: improvement with the use of methotrexate and corticosteroids and possibly other DMARDs

Chronic chikungunya arthritis (CCA)

Rheumatoid arthritis (RA)

Differences

Presentation: medium and/or large joint asymmetric mono- or oligoarthritis (less commonly). Signs and Symptoms: neuropathic pain, memory and concentration problems and asthenia/depression can be more predominant than in RA. Serologies: anti-CHIKV IgM and/or IgG antibodies.

<u>Causative pathogen:</u> chikungunya virus (CHIKV)

Serum cytokine profile: ↑ IL-1Ra, IL-1β, IL-6, IL-7, IL-8, IL-12, IL-15, and IFN-α (during acute arthritis); ↓ CCL5/RANTES (during acute arthritis); ↑ GM-CSF and TNF (during chronic arthritis).

<u>Presentation:</u> usually insidious and known etiology

Signs and Symptoms: association with pulmonary

(interstitial) disease and/or rheumatoid nodules, systemic involvement <u>Serologies</u>: anti-cyclic citrullinated peptide antibodies (anti-CCP); rheumatoid factor (RF)

Causative pathogen(s): EBV, CMV, HIV, HTLV-I, HCV, and others (implicated in the pathogenesis)

Serum cytokine profile: ↑ CCL5/RANTES correlates with disease severity.

Chronic Arthritis post-Infection

Table 3.	Meta-analy	vsis outcomes (random-effects model)*
----------	------------	-----------------	----------------------	----

CHIK-CIR	Studies	No. (%)	Combined effect % (95% CI)	Qt	I ² ‡	$ au^2 \S$	P
All studies	18	5,702 (100)	40.22 (31.11-49.34)	36.6	99.6	0.0838	< 0.001
Prospective	9	2,226 (39.0)	25.33 (16.46-34.21)	21.6	98.6	0.0247	< 0.001
India	6	3,148 (55.2)	27.27 (15.66-38.88)	21.2	99.6	0.0411	< 0.001
France	8	1,986 (34.8)	50.25 (25.38-75.12)	4.4	99.7	0.1797	< 0.001
Chronic arthritis	10	4,232 (74.2)	13.66 (9.31-18.00)	62.0	98.6	0.0060	< 0.001
≥200 patients	11	5,160 (90.5)	34.14 (23.99-44.29)	26.13	99.6	0.0525	< 0.001
≥18-month followup	9	3,197 (56.1)	32.13 (22.21-42.04)	29.13	99.5	0.0453	< 0.001

^{* 95%} CI = 95% confidence interval; CHIK-CIR = chikungunya virus disease chronic inflammatory rheumatism.

⁺ Cochran's Q statistic for heterogeneity.

[‡] I² index for degree of heterogeneity (percentage).

[§] Tau-squared measure of heterogeneity.

Post-infection RA

- Reunion Island outbreak (n=300,000) although only 6% symptomatic
- N=21 met ACR RA criteria
 - 10 months mean symptoms (range 4-18)
 - Mean ESR 40
 - RF positive (57.1%)
 - anti-CCP antibodies (28.6%)
 - MTX (n=19), TNFi (n=6)

	Table 2
١	Radiographic analysis of hands and feet of 21 patients with RA after Chikun-
	gunva fever infection.

	At diagnosis	At ~24 months' follow-up
Erosions	5 (23.8%)	17 (81.0%)
Joint space narrowing	12 (57.1%)	17 (81.0%)
Normal radiographs	9 (42.9%)	4 (19.0%)

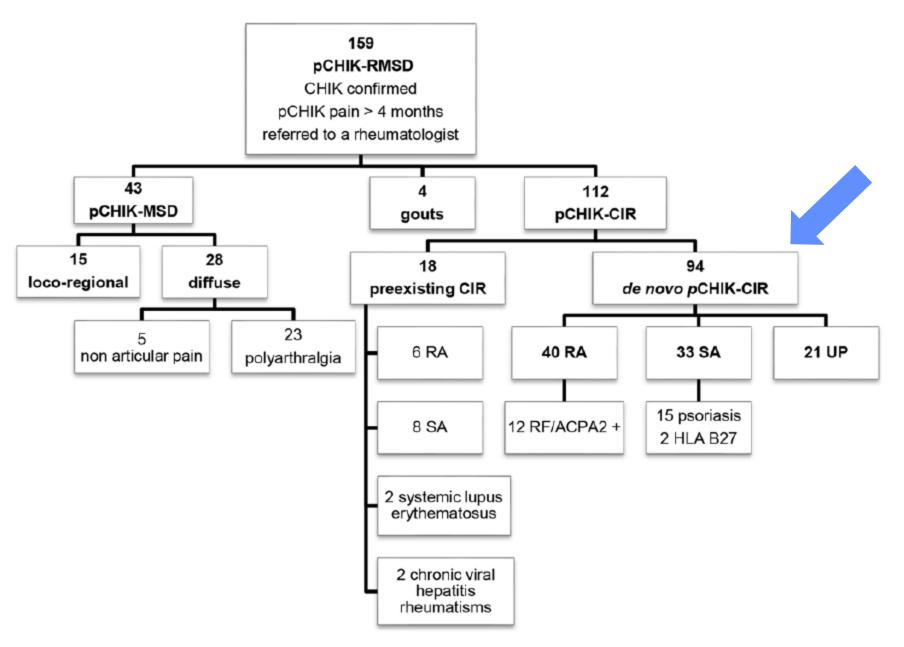
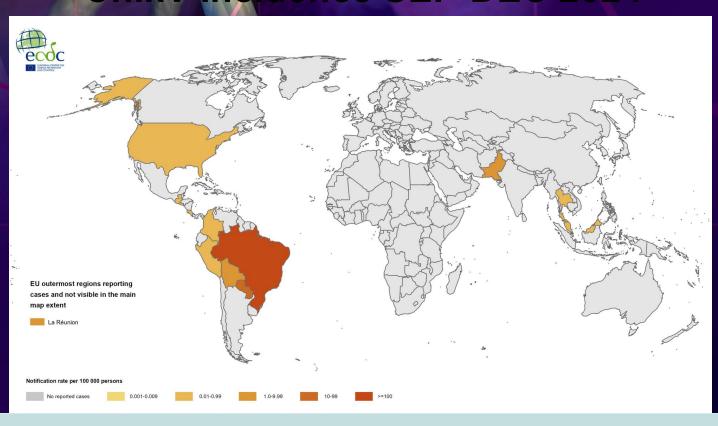



Fig 1. Nosologic flow-chart of patients referred to a rheumatologist for post-chikungunya (pCHIK) persistent rheumatic musculoskeletal pain, Saint-Denis, Reunion Island, 2006–2012.

Chiky Incidence SEP-DEC 2024

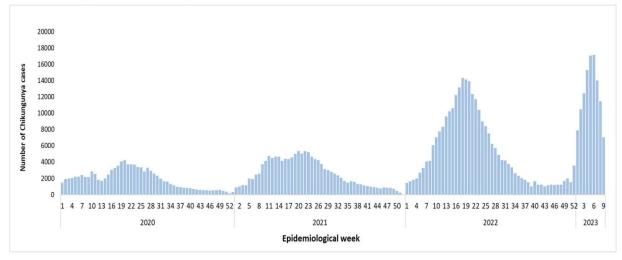
Situation update, December 2024

In 2024 and as of 30 of November, approximately **480 000 CHIKVD cases** and **over 200 deaths** have been reported worldwide. A total of 23 countries reported CHIKVD cases from the Americas (15), Asia (6), Africa (1) and Europe (1).

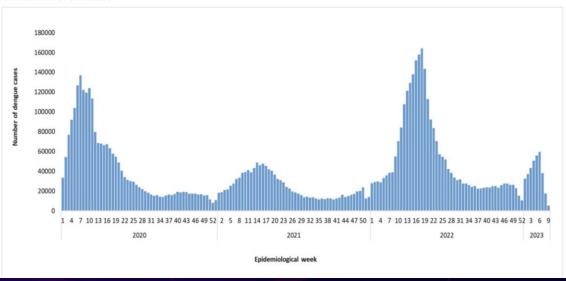
Countries with most cases

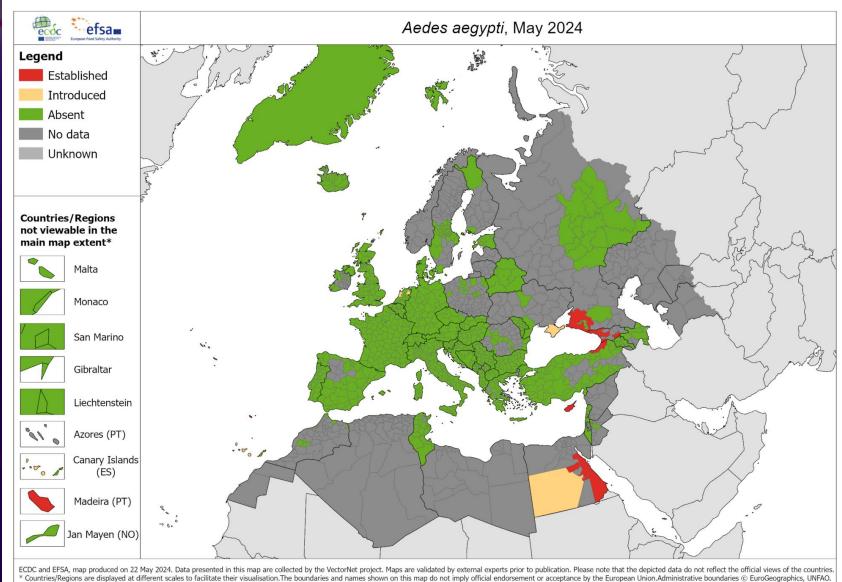
Brazil, Paraguay, Argentina and Bolivia. Cases in mainland Europe

One in France.


Risk of transmission in continental Europe

Low


zuzz, ali were reported from Brazil (3).


Figure 2. Chikungunya cases by epidemiological week (EW) of report. Region of the Americas, 1 January 2020-4 March 2023 (until EW 9 of 2023).

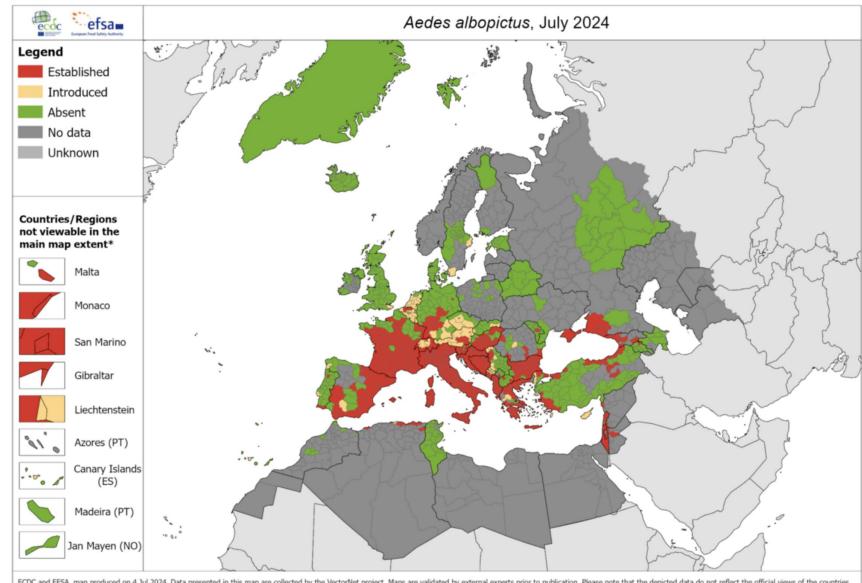
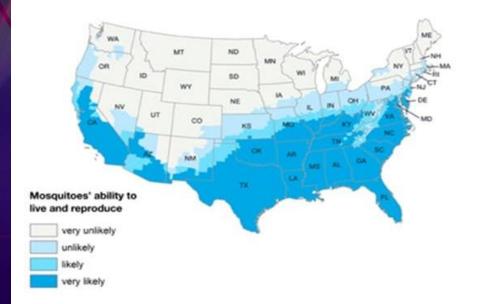

Source: PAHO/WHO Health Information Platform for the Americas (PLISA per its acronym in Spanish) as provided by Ministries and Institutes of Health of the countries and territories of the Region of the Americas. Washington DC: PAHO.

Figure 1. Distribution of suspected dengue cases, by epidemiological Week, Region of the Americas,1 January 2020 to 4 March 2023.


Councies/regions are disprayed at different scales to facilitate trein visualisation. The boundaries and names shown on this map do not imply official endosement of acceptance by the European Onion Administrative boundaries (a) Europeographics, overall and the second of the European Onion Administrative boundaries (a) Europeographics, overall and the European Onion Administrative boundaries (b) Europeographics, overall and the European Onion Administrative boundaries (b) Europeographics, overall and the European Onion Administrative boundaries (c) Europeographics, overall and the European Onion Administrative boundaries (c) Europeographics, overall and the European Onion Administrative boundaries (c) Europeographics, overall and the European Onion Administrative boundaries (c) Europeographics, overall and the European Onion Administrative boundaries (c) Europeographics, overall and the European Onion Administrative boundaries (c) Europeographics, overall and the European Onion Administrative boundaries (c) Europeographics, overall and the European Onion Administrative boundaries (c) Europeographics, overall and the European Onion Administrative boundaries (c) European Onion Administrative boundaries (c) European Onion Administrative boundaries (c) European Onion European Onio

ECDC and EFSA, map produced on 4 Jul 2024. Data presented in this map are collected by the VectorNet project. Maps are validated by external experts prior to publication. Please note that the depicted data do not reflect the official views of the countries.

* Countries/Regions are displayed at different scales to facilitate their visualisation. The boundaries @ EuroGeographics, UNFAO.

Estimated Potential Range of Aedes aegypti in the United States, 2017

Estimated Potential Range of Aedes albopictus in the United States, 2017

Move to Oregon while you still can?

Potential range of Zika, Chikungunya, and Dengue

Live IXCHIQ®

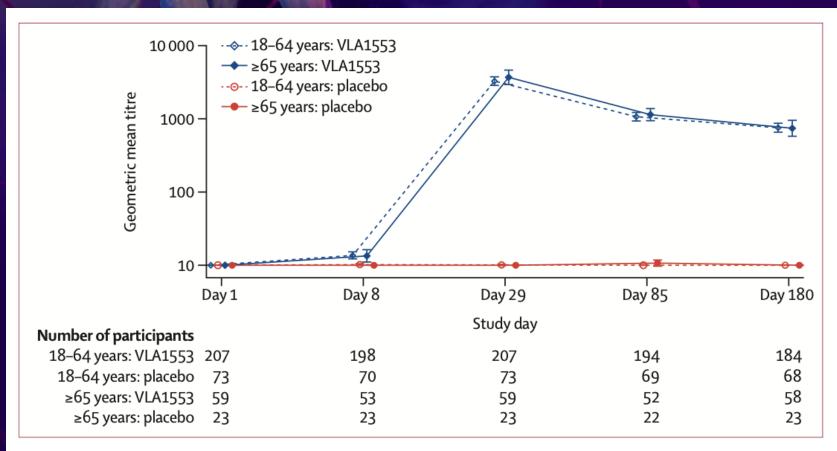


Figure 2: Assessment of neutralising antibodies after vaccination

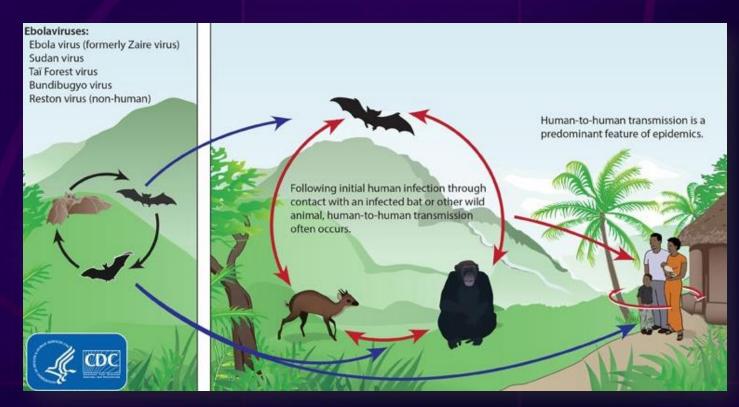
Line plot of chikungunya virus-specific neutralising antibodies geometric mean titres by study day and age stratum. Days shown in the figure refer to study days; day 1=day of vaccination. Error bars indicate 95% CIs. Neutralising antibodies to the vaccine were evaluated from clinical specimen (human serum) using a micro plaque reduction neutralisation test (μ PRNT). A μ PRNT₅₀ titre was defined as the dilution with 50% plaque reduction in the μ PRNT.

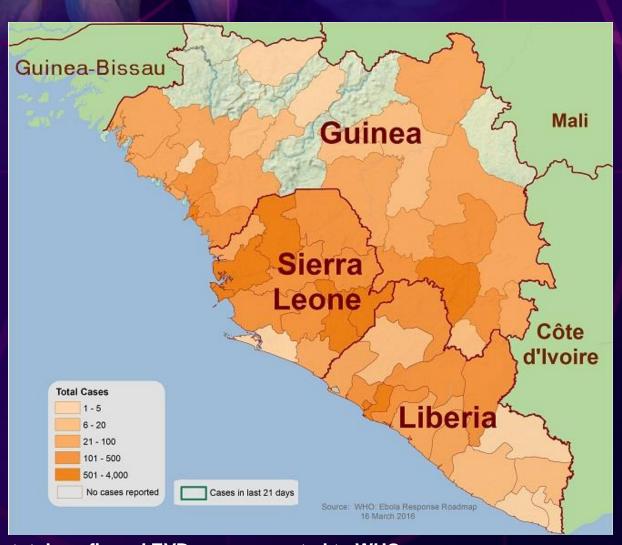
	VLA1553 (n=3082)	Placebo (n=1033)	Total (n=4115)
Any adverse events	1926 (62.5%, 60.8–64.2) 6415	463 (44.8%, 41.8-47.9) 1071	2389 (58·1%, 56·5–59·6) 7486
Any related adverse events	1575 (51·1%, 49·3–52·9) 4621	322 (31·2%, 28·4-34·1) 647	1897 (46·1%, 44·6–47·6) 5268
Any related severe adverse events	62 (2.0%, 1.5–2.6) 70	1 (0.1%, 0.0-0.5) 3	63 (1.5%, 1.2-2.0) 73
Any serious adverse events	46 (1.5%, 1.1-2.0) 73	8 (0.8%, 0.3–1.5) 10	54 (1.3%, 1.0-1.7) 83
Any related serious adverse events	2 (0.1%, 0.0–0.2) 2	0 (0%, 0·0–0·4) 0	2 (0.0%, 0.0-0.2) 2
Any adverse events of special interest	10 (0.3%, 0.2–0.6) 26	1 (0.1%, 0.0-0.5) 2	11 (0.3%, 0.1–0.5) 28
Any adverse event with a frequency ≥10% in at least one	e study arm		
Headache	986 (32.0%, 30.3–33.7) 1028	160 (15.5%, 13.3-17.8) 178	1146 (27.8%, 26.5–29.2) 1206
Fatigue	886 (28.7%, 27.2-30.4) 893	137 (13·3%, 11·3–15·5) 139	1023 (24.9%, 23.5–26.2) 1032
Myalgia	750 (24.3%, 22.8–25.9) 758	82 (7.9%, 6.4–9.8) 84	832 (20-2%, 19-0-21-5) 842
Arthralgia	554 (18.0%, 16.6–19.4) 589	63 (6.1%, 4.7–7.7) 70	617 (15.0%, 13.9–16.1) 659
Injection site pain	413 (13·4%, 12·2–14·7) 519	101 (9.8%, 8.0–11.8) 122	514 (12·5%, 11·5–13·5) 641
Pyrexia	427 (13.9%, 12.7–15.1) 429	13 (1.3%, 0.7–2.1) 13	440 (10.7%, 9.8–11.7) 442
Nausea	359 (11.6%, 10.5-12.8) 364	63 (6.1%, 4.7–7.7) 64	422 (10·3%, 9·3–11·2) 428
Any serious adverse event with a frequency ≥0.2% in at	least one study arm by system orgar	n class	
Infections and infestations	9 (0.3%, 0.1–0.6) 9	3 (0.3%, 0.1–0.8) 3	12 (0.3%, 0.2-0.5) 12
Injury, poisoning, and procedural complications	8 (0.3%, 0.1–0.5) 15	1 (0.1%, 0.0-0.5) 1	9 (0.2%, 0.1–0.4) 16
Psychiatric disorders	7 (0.2%, 0.1–0.5) 8	2 (0.2%, 0.0-0.7) 4	9 (0.2%, 0.1–0.4) 12
Cardiac disorders	5 (0.2%, 0.1–0.4) 7	0 (0%, 0·0–0·4) 0	5 (0.1%, 0.0-0.3) 7

Data are n (%, 95% CI) N. For each category, participants were included only once, even if they experienced multiple events in that category. Related adverse events are those recorded as probably related or possibly related on the eCRF. Adverse events of special interest counts are for the overall event and the adverse event of special interest symptom count includes a count of all symptoms contributing to the event. Two-sided exact Clopper-Pearson 95% CIs are presented. eCRF=electronic case report form. n=number of participants. N=number of events.

Table 3: Overall summary of adverse events (safety population)

Measles and RA?


- Known to remain latent in CNS
 - SSPE 15-20 years post infection
- Isolated virus from RA knee prior to arthroplasty
- Seronegative RA (n=50)
 - 22% with measles IgM
- GWAS suggesting similar genetic underpinnings
- Measles decline post vaccine start (1963)
 - Concurrent with RA declining incidence?


Should I boost my patients?

- Recent outbreaks in US
- Diminished vaccine coverage
- Considerations
 - Live vaccine
 - Should be immune
 - Can check titers if needed

<u>Ebola Virus</u>

- Zoonotic virus bats most likely reservoir, but species unknown
- Spillover from infected wild animals (e.g., fruit bats, monkey, duiker) to humans, followed by human-human transmission

Map includes total confirmed EVD cases reported to WHO

Ebola Virus Disease Complicated by Late-Onset Encephalitis and Polyarthritis, Sierra Leone

Patrick Howlett, Colin Brown, Trina Helderman, Tim Brooks, Durodamil Lisk, Gibrilla Deen, Marylou Solbrig, Marta Lado

Author affiliations: Kings Sierra Leone Partnership, Freetown, Sierra Leone (P. Howlett, M. Lado); University College London Hospital, London, UK (C. Brown); Medair, Ecublens, Switzerland (T. Helderman); Public Health England, Porton Down, UK (T. Brooks); Connaught Hospital, Freetown (D. Lisk, G. Deen); University of Kansas, Lawrence, Kansas, USA (M. Solbrig)

DOI: http://dx.doi.org/10.3201/eid2201.151212

Inflammatory Eye Disease

Figure 2. Color fundus and optical coherence tomography (OCT) images during active uveitis and after resolution for a physician from the United States who contracted Ebola virus disease in Liberia and had eye inflammation develop during convalescence. A) Color fundus image of the left eye showing a hazy view to the posterior pole during active uveitis (standardization of uveitis nomenclature classification grade 2-3). B) Color fundus image of the left eye showing a clear view to the posterior pole after resolution of uveitis. C) OCT of macula showing vitreous debris and small particles in a line of vitreous strands, consistent with inflammatory debris. D) OCT of macula showing resolution of vitreous and inflammatory debris. Scale bars indicate 200 µm.

"Long" Ebola 7 Years after

Table 2. Adjusted Odds of Post-Ebola symptoms being present and highly interfering over time

Symptom	Presence (N=326)			Severity* (N= 277)			
	Odds Ratio	95% Confidence Interval	P-value	Odds Ratio	95% Confidence Interval	P-value	
Any symptom	0.96	(0.95, 0.97)	< 0.0001	0.94	(0.93, 0.95)	< 0.0001	
Fatigue	0.94	(0.93, 0.95)	< 0.0001	0.94	(0.92, 0.96)	< 0.0001	
Numbness of Feet	0.99	(0.98, 1.01)	0.3642	0.95	(0.93, 0.97)	0.0081	
Numbness of Hands	0.99	(0.99, 1.01)	0.9916	0.96	(0.94, 0.99)	< 0.0001	
Headache	0.96	(0.95, 0.97)	< 0.0001	0.95	(0.94, 0.97)	< 0.0001	
Hearing Loss	0.96	(0.92, 0.99)	0.0071	0.81	(0.77, 0.87)	< 0.0001	
Joint Pain	0.95	(0.94, 0.97)	< 0.0001	0.92	(0.91, 0.94)	< 0.0001	
Muscle Pain	0.80	(0.77, 0.84)	< 0.0001	0.77	(0.70, 0.85)	< 0.0001	
Visual Loss	0.98	(0.97, 0.99)	0.0113	0.90	(0.87, 0.94)	< 0.0001	

Adjusted for year, age and sex. *Severity among those reporting symptom at study entry and/or subsequent study

Symptoms decline with time; >50% still with one or more 5 years out

Post-Infectious Syndromes

Table 1 Overview of unexplained PAISs associated with	1
documented infections	

documented infections	
Pathogen	Name of PAIS
Viral pathogens	
SARS-CoV-2	Post-acute sequelae of SARS-CoV-2 infection (PASC) Post-acute COVID-19 syndrome (PACS) Long COVID
Ebola	Post-Ebola syndrome (PES) Post-Ebola virus disease syndrome (PEVDS)
Dengue	Post-dengue fatigue syndrome (PDFS)
Polio	Post-polio syndrome (PPS)
SARS	Post-SARS syndrome (PSS)
Chikungunya	Post-chikungunya chronic inflammatory rheumatism (pCHIK-CIR) Post-chikungunya disease
EBV	No name
West Nile virus	No name
Ross River virus ^a	No name
Coxsackie B ^a	No name
H1N1/09 influenza ^{a,b}	No name
$VZV^{a,b}$	No name
Non-viral pathogens	
Coxiella burnetii	Q fever fatigue syndrome (QFS)
Borrelia ^c	Post-treatment Lyme disease syndrome (PTLDS)
Giardia lamblia ^{a,d}	No name

Documented post COVID Pathologic Entities

Fig. 2: Extrapulmonary manifestations of COVID-19.

From: Extrapulmonary manifestations of COVID-19

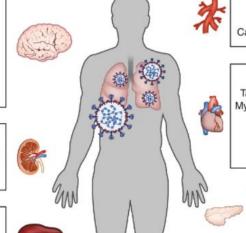
Persistent symptoms secondary to defined pathology

Defined pathology without associated symptoms

Neurologic

Headaches Dizziness Encephalopathy Guillain-Barré Ageusia Myalgia Anosmia Stroke

Renal


Acute kidney injury Proteinuria Hematuria

Hepatic

Elevated aminotransferases Elevated bilirubin

Gastrointestinal

Diarrhea Nausea/vomiting Abdominal pain Anorexia

Thromboembolism

Deep vein thrombosis Pulmonary embolism Catheter-related thrombosis

Cardiac

Takotsubo cardiomyopathy Myocardial injury/myocarditis Cardiac arrhythmias Cardiogenic shock Myocardial ischemia Acute cor pulmonale

Endocrine

Hyperglycemia Diabetic ketoacidosis

Dermatological

Petechaie Livedo reticularis Erythematous rash Urticaria Vesicles Pernio-like lesions PERSISTENT SYMPTOMS WITHOUT DEFINED PATHOLOGY

News & views

https://doi.org/10.1038/s41584-023-00964-v

High risk of autoimmune diseases after COVID-19

Chetan Sharma & Jagadeesh Bayry

Check for updates

New-onset autoimmune disease after COVID-19

Corrilynn O. Hileman^{1,2*†}, Shahdi K. Malakooti^{1,2†}, Nirav Patil³, Nora G. Singer^{1,2} and Grace A. McComsey^{1,3}*

¹Case Western Reserve University School of Medicine, Cleveland, OH, United States, ²Department of Medicine, MetroHealth Medical Center, Cleveland, OH, United States, 3University Hospitals Cleveland Medical Center, Cleveland, OH, United States

Front. Immunol., 07 February 2024

Risk of autoimmune diseases in patients with COVID-19: A retrospective cohort study

Renin Chang, a,b,c,m Thomas Yen-Ting Chen, de Shiow-Ing Wang, a,b,c,m Yao-Min Hung, a,b,c,m Hui-Yuan Chen, and Cheng-Chung James Wei^{C,j,k,l,**}

^aDepartment of Emergency Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan

^bDepartment of Recreation and Sports Management, Tajen University, Pintung, Tajwan

Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan

dHarvard T.H. Chan School of Public Health, Boston, MA, USA

Department of Medical Research and Education, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan

Center for Health Data Science, Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan

⁹Division of Nephrology, Department of Internal Medicine, Taipei Veterans General Hospital Taitung Branch, Taiwan

^hCollege of Science and Engineering, National Taitung University, Taitung, Taiwan

College of Health and Nursing, Meiho University, Pingtung, Taiwan

Division of Allergy, Immunology and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan

^kGraduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan

Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan

Background There are a growing number of case reports of various autoimmune diseases occurring after COVID-19, yet there is no large-scale population-based evidence to support this potential association. This study provides a closer insight into the association between COVID-19 and autoimmune diseases and reveals discrepancies across sex, age, and race of participants.

eClinicalMedicine 2023;56: 101783

https://doi.org/10. 1016/j.edinm.2022. 101783

Study	N with Covid	N Controls No Covid	Increased Risk of New Autoimmune Disease	Citation
US	884,463	2,926,016	19-47%*	Chang R, eClinical Medicine, 10 January 2023
Germany	641,704	1,560,357	43%	Tesch F, MedRxiv, 26 January 2023
UK	458,147	1,818,929	22%	Syed U, MedRxiv 7 October 2022

*range dependent on specific autoimmune condition, adjusted for competing risks, before this adjustment 200-300% increased risk @erictopol

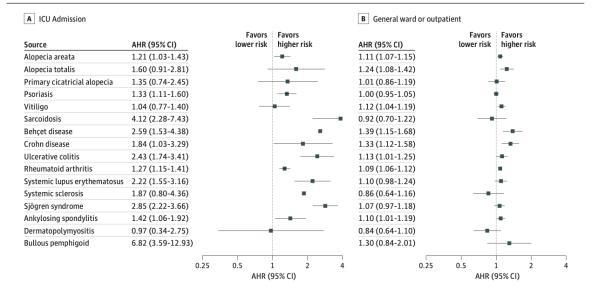
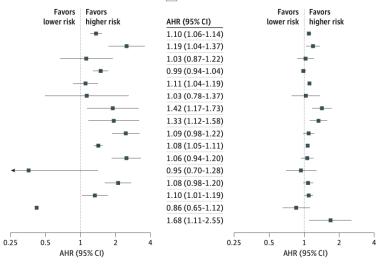

nature reviews rheumatology 2023

Figure 2. Comparison of Autoimmune and Autoinflammatory Disease Incidence Risks Between the COVID-19 and Control Cohorts

	Cohort incidence rate (No	. of events/person-years)		Favors	Favors
Source	COVID-19	Control	AHR (95% CI)	lower risk	higher risk
Alopecia areata	13.51 (3301/2442664)	10.43 (3060/2933357)	1.11 (1.07-1.15)		•
Alopecia totalis	0.92 (228/2474400)	0.68 (203/2965056)	1.24 (1.09-1.42)		-
Primary cicatricial alopecia	0.57 (140/2474459)	0.53 (158/2964924)	1.03 (0.87-1.21)	-	
Psoriasis	5.94 (1456/2450391)	6.10 (1791/2934069)	1.01 (0.96-1.06)		•
Vitiligo	3.32 (820/2468554)	3.03 (896/2958683)	1.11 (1.04-1.19)		-
Sarcoidosis	0.19 (47/2475786)	0.20 (58/2966492)	1.03 (0.79-1.35)	_	-
Behçet disease	0.52 (128/2473479)	0.34 (100/2964315)	1.45 (1.20-1.74)		
Crohn disease	0.59 (146/2474402)	0.42 (126/2965272)	1.35 (1.14-1.60)		-
Ulcerative colitis	1.37 (339/2470689)	1.12 (332/2961302)	1.15 (1.04-1.28)		
Rheumatoid arthritis	19.13 (4599/2403967)	18.68 (5378/2878387)	1.09 (1.06-1.12)		
Systemic lupus erythematosus	1.11 (274/2472696)	0.92 (272/2963149)	1.14 (1.01-1.28)		-
Systemic sclerosis	0.16 (39/2475847)	0.17 (51/2966388)	0.90 (0.67-1.21)	-	
Sjögren syndrome	1.55 (384/2471985)	1.45 (429/2961440)	1.13 (1.03-1.25)		-
Ankylosing spondylitis	2.20 (542/2469005)	1.99 (590/2959193)	1.11 (1.02-1.20)		-
Dermatopolymyositis	0.19 (47/2475844)	0.22 (66/2966480)	0.84 (0.64-1.09)		
Bullous pemphigoid	0.08 (21/2476229)	0.08 (23/2966959)	1.62 (1.07-2.45)		
				0.25 0.5	1 2
				AHR ((95% CI)

Hazard estimates were adjusted for all 27 covariates used in the inverse probability of treatment weighting. AHR indicates adjusted hazard ratio.


Figure 4. Autoimmune and Autoinflammatory Disease Risk in the COVID-19 Cohort by COVID-19 Severity and Period

C Delta dominant

AHR (95% CI) Source Alopecia areata 1.37 (1.22-1.53) Alopecia totalis 2.51 (1.75-3.59) Primary cicatricial alopecia 1.13 (0.67-1.90) **Psoriasis** 1.50 (1.29-1.74) Vitiligo 1.11 (0.87-1.41) Sarcoidosis 1.14 (0.50-2.61) Behçet disease 1.90 (1.14-3.17) Crohn disease 1.94 (1.18-3.21) Ulcerative colitis 2.47 (1.88-3.23) Rheumatoid arthritis 1.43 (1.31-1.56) Systemic lupus erythematosus 2.50 (1.87-3.33) Systemic sclerosis 0.36 (0.09-1.42) Sjögren syndrome 2.12 (1.64-2.75) Ankylosing spondylitis 1.34 (1.03-1.73) Dermatopolymyositis 0.42 (0.15-1.21) Bullous pemphigoid

D Omicron dominant

Hazard estimates were adjusted for all 27 covariates used in the inverse probability of treatment weighting. The absence of the adjusted hazard ratio (AHR) and 95% CIs for bullous pemphigoid in panel C is not due to missing data

but is a result of low sample size and insufficient events in this subgroup. ICU indicates intensive care unit.

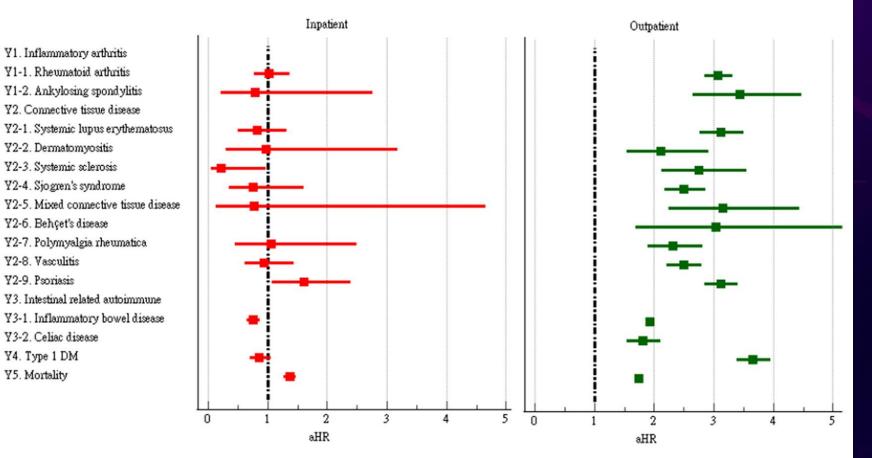


Fig. 7: Forest plot of outcomes stratified by severity of disease.

Y1. Inflammatory arthritis Y1-1. Rheumatoid arthritis Y1-2. Ankylosing spondylitis Y2. Connective tissue disease

Y2-2. Dermatomyositis Y2-3. Systemic sclerosis Y2-4. Sjogren's syndrome

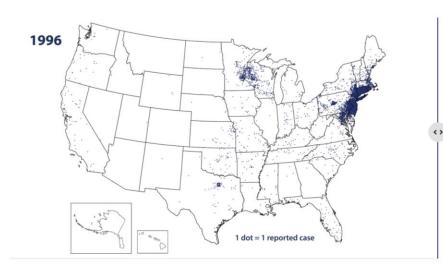
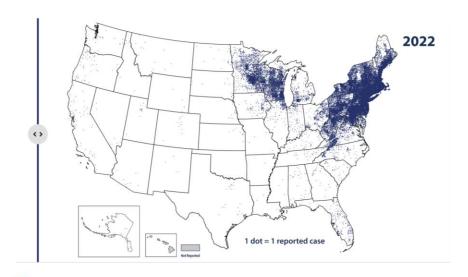
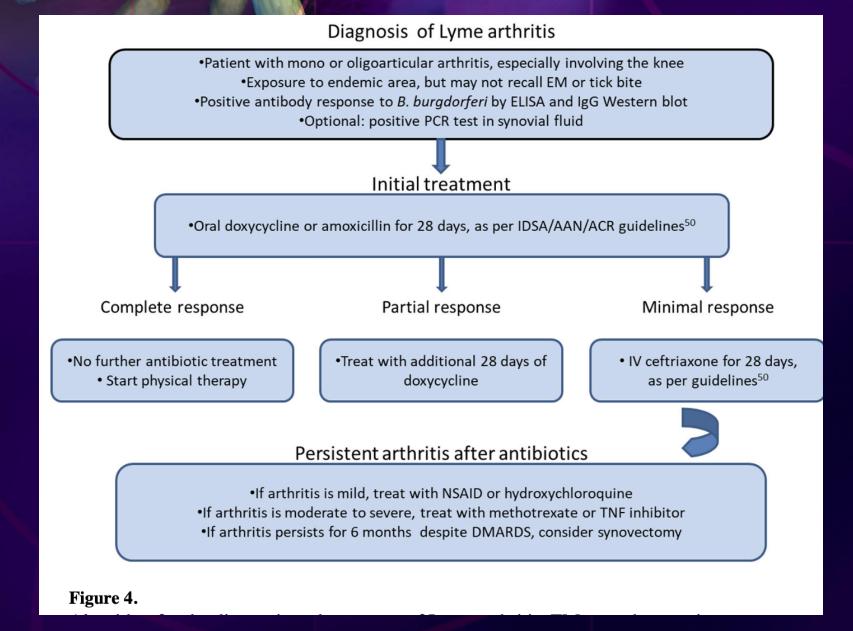
Y2-6. Behçet's disease

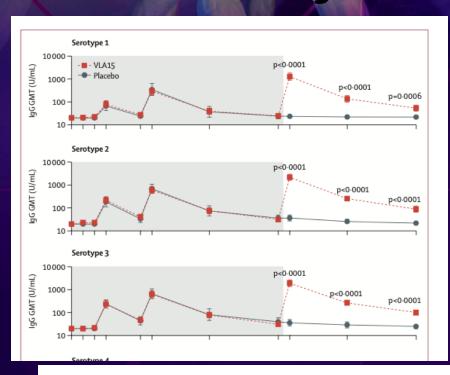
Y2-8. Vasculitis Y2-9. Psoriasis

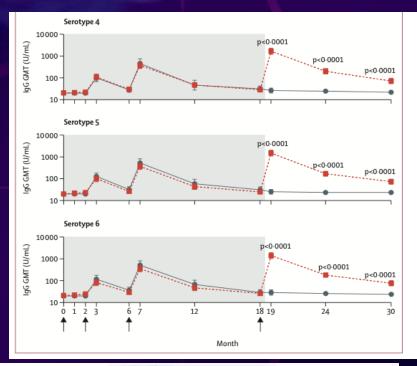
Y3-2. Celiac disease Y4. Type 1 DM Y5. Mortality

Lyme

Figure 3. Change in Incidence and Distribution of Reported Cases of Lyme Disease in the United States, 1996 and 2022


Figure 3. Change in Incidence and Distribution of Reported Cases of Lyme Disease in the United States, 1996 and 2022



Lyme Vaccine

Phase 3 VALOR Lyme Disease Trial: Valneva and Pfizer **Announce Primary Vaccination Series Completion**

Wednesday, July 17, 2024 - 04:30pm

- Participants completed primary vaccination series (3 doses) with VLA15
- · Primary vaccination series to be followed by a booster approximately one year after completion

Sign up for the latest Pfizer

Wire news alerts

Receive real-time updates on Pfizer's news delivered directly to your inbox.

Table 3. Microbial infections associated with the development of reactive arthritis

Enteric bacteria

Salmonella spp.

Various serovars

Shigella spp.

S. flexneri

S. dysenteriae^a

S. Sonneia

Yersinia spp.

Y. enterocolitica (especially O:3 and O:9)

Y. pseudotuberculosis

Campylobacter spp.

C. jejuni

C. coli^a

Clostridium difficile

Bacteria causing urethritis

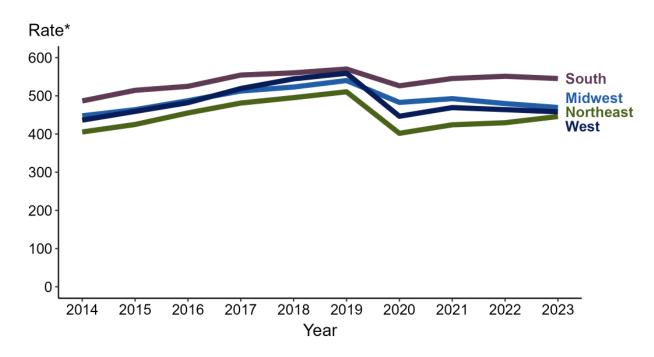
Chlamydia trachomatis

Mycoplasma genitalium (?)

Ureaplasma urealyticum (?)

Bacteria causing upper respiratory infection

β-hemolytic Streptococcus (?)


Chlamydia pneumoniae

^aRecently confirmed species/serovars.

Chlamydia Sp.

- Reactive arthritis
 - Up to 5% post infection C. trachomatis
- Persistent infection
- Synovial DNA more prevalent in undiff SpA than controls
 - 62% Vs. 16%

Chlamydia — Rates of Reported Cases by Region and Year, United States, 2014–2023

^{*} Per 100,000

C. psittacii

- Italian study
- DNA (in PBMC) of psoriasis Vs. controls
 - 11/64 (17)% Vs. 1/225 (0.4%), [p<0.0001)
 - 1 (10%) of those with PsA

C. psittacii

Table II. Cp prevalence in patients, overall and according to the autoantibodies status. ^APatients with chronic polyarthritis vs. HBDs; ^BSeronegative polyarthritis (see text) vs. seropositive RA (RF-positive and/or anti-CCP-positive RA); ^CSeropositive RA vs. HBDs.

	Cp pre	valence	Statistics			
All the patients with chronic polyarthritis	38/293	(13%)	AOR=33.4			
HBDs	1/225	(0.4%)	95%CI: 4.54–242.2; <i>p</i> <0.0001			
Subanalyses						
Seronegative polyarthritis	23/118	(19.5%)	^B OR=2.58 95%CI: 1.28–5.19; <i>p</i> =0.0078			
Seronegative RA	13/46	(28.3%)	77. T.			
Psoriatic arthritis	6/36	(16.7%)				
Undifferentiated Spondyloarthritis	4/36	(11.1%)	COR=21			
Seropositive RA	15/175	(8.6%)	95%CI: 2.75–160.7; <i>p</i> <0.0001			

Rifampin-based therapy

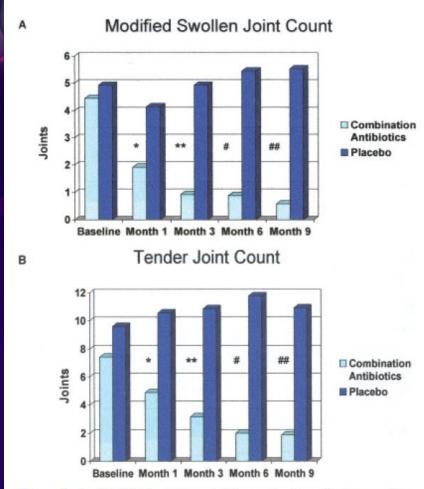


Figure 1. A, Modified swollen joint counts in patients receiving combination antibiotics compared with those receiving placebo. *=P=0.0001; **=P<0.0001; **=P=0.0007; **=P=0.0005, versus baseline. B, Tender joint counts in patients receiving combination antibiotics compared with those receiving placebo. *=P=0.0009; **=P<0.0001; **=P=0.0002; **=P=0.0004, versus baseline. Values are the mean.

Carter JD et al. Arth rheum 2010

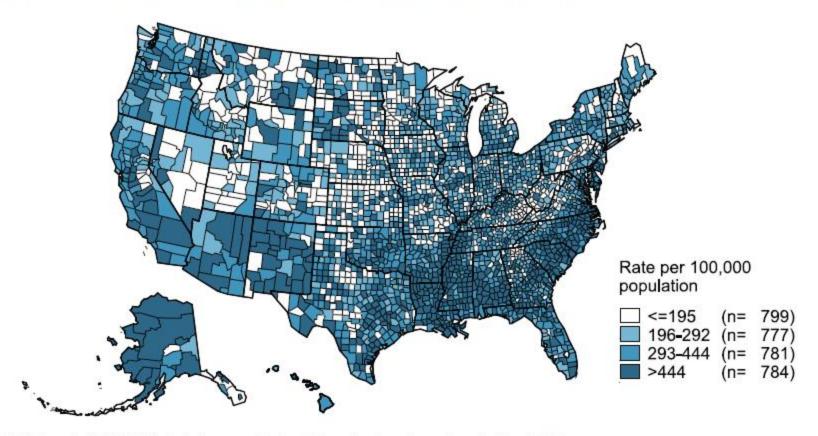
0

Reported Enteric Disease in Oregon 1,000 Campylobacter 750 500 Salmonella Shigella 250 E. coli 0157

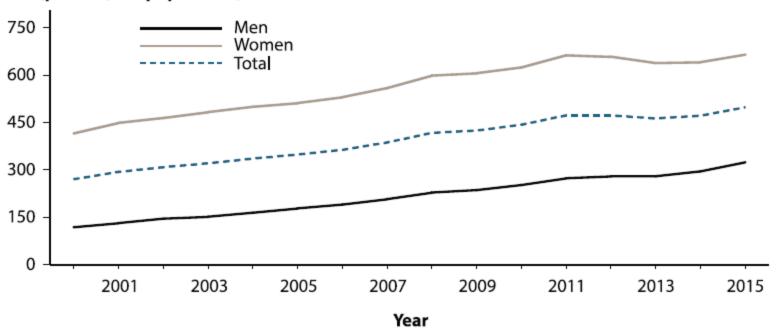
year of onset

Risk of ReA Pathogen and Severity

- 6379 culture-confirmed enteric infections, Oregon
- The percentage of patients reporting joint pain
 - Subset examined for ReA)
- Severity of diarrheal symptoms increased risk of ReA
- 13% with possible ReA (9%-15%)
 - Campylobacter (2.1/100,000)
 - Salmonella (1.4/100,000)


Acknowledgements

- UAB colleagues
- ACR and EULAR colleagues
- Oregon Health Authority colleagues
- CDC colleagues


Figure 4. Chlamydia — Rates of Reported Cases by County, United States, 2015

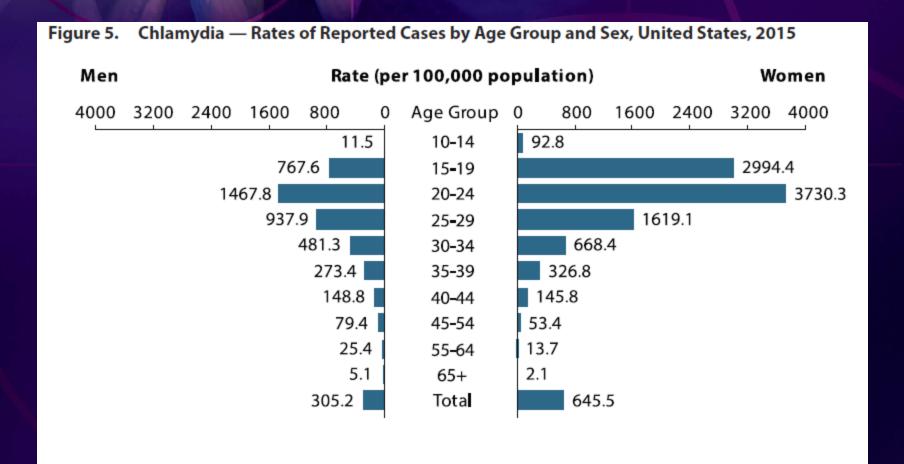
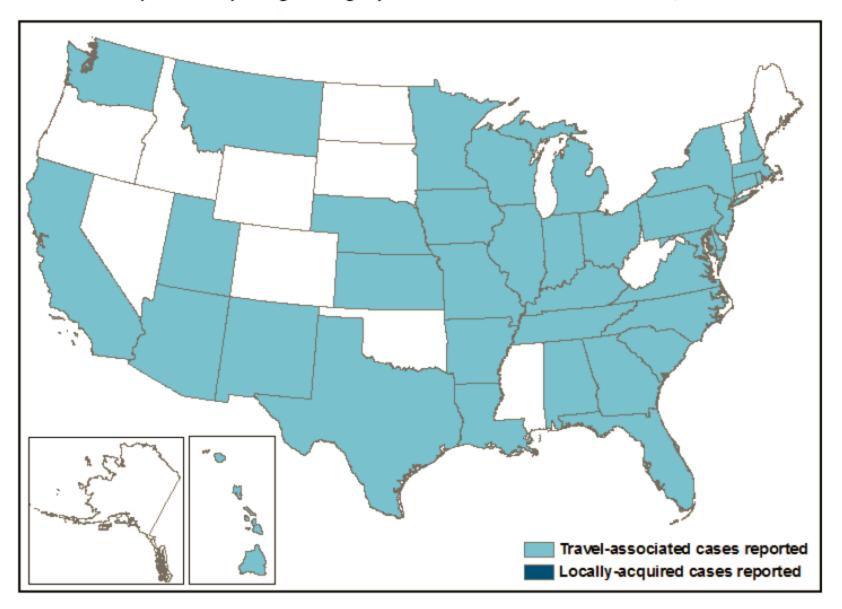

NOTE: Refer to the NCHHSTP Atlas for further county-level rate information: https://www.cdc.gov/nchhstp/atlas/.

Figure 1. Chlamydia — Rates of Reported Cases by Sex, United States, 2000-2015


Rate (per 100,000 population)

NOTE: Data collection for chlamydia began in 1984 and chlamydia was made nationally notifiable in 1995; however, chlamydia was not reportable in all 50 states and the District of Columbia until 2000. Refer to the National Notifiable Disease Surveillance System (NNDSS) website for more information: https://wwwn.cdc.gov/nndss/conditions/chlamydia-trachomatis-infection/.

Map. States reporting chikungunya virus disease cases – United States, 2016

Chikungunya, countries or areas at risk

The boundaries and names shown and the designations used on this map do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement.

Map Production: Public Health Information and Geographic Information Systems (GIS) World Health Organization

© WHO 2008. All rights reserved

Table 2. Characteristics of study subjects*

		снік-	Chronic		Mean							arth	ites of ralgia ase ons				
4.4		CIR,	arthritis,	***	age,	Other	Anti	Anti					**	Mon	- nm	RF/	0.1.1.1
Author, year	No.	no.	no.	Women	years	symptoms	IgM	IgG	Comorbidity	Recovered	Hand	Ankle	Knee	MCP	DIP	ACPA	Origint
Javelle et al, 2015	159	94	94	74.8	51	_	_	_	89.9	_	16.3	_	_	_	_	_	_
Miner, et al, 2015	10	8	8	80.0	39	20.0	80.0		_	_	60.0	_	_	_	_	-	Haiti
Chaaithanya et al, 2014	203	9	9	4.4	58	1.0	2.5	3.4	_	1.5	-	-	-	-	-	6.4	-
Yaseen et al, 2014	403	181	57	0.7	40	19.4	_	_	_	_	_	_	_	_	_	_	_
Gerardin et al, 2013	346	261	_	62.1	50	_	_	_	15.3	24.6	75.7	_	_	_	_	_	_
Thiberville et al, 2013	26	6	_	37.0	40	100.0	_	-	19.2	44.0	_	_	_	74	_	_	_
Schilte et al, 2013	102	62	_	50.3	35	62.7	_	16.8	_	17.2	_	-	_	_	_	_	_
Chopra et al, 2012	509	24	1	60.1	45	34.0	48.9	61.9	_	65.0	_	11.39	_	_	_	_	_
Couturier et al, 2012	338	12	_	53.5	50	_	_	_	67.2	45.0	_	_	_	_	_	_	ICUN
Kularatne et al, 2012	512	230	14	53.8	44	25.0	_	_	6.6	20.0	33.7	33.7	_	_	_	_	_
Mathew et al, 2011	1396	437	113	71.6	48	8.7	_	_	22.9	_	_	_	83.3	_	_	0.1	_
Gerardin et al, 2011	413	177	_	59.0	36	100.0	_	_	_	_	_	_	_	_	_	_	_
Chopra and Vanugopalan, 2011	212	172	26	57.8	45	-	-	43.9	-	-	-	-	78.9	-	-	-	-
Ganu and Ganu, 2011	625	37	37	56.3	50	_	0.8	_	_	_	_	_	_	_	12.5	_	_
Chow, 2011	30	4	-	13.3	45	46.7	-	_	_	83.3	-	_	_	_	_	_	_
Manimunda et al, 2010	203	94	94	52.7	35	73.4	100.0	-	100.0	51.0	-	-	27.5	-	-	0.0	-
Soumahoro et al, 2009	199	185	-	50.8	42	100.0	35.7	-	87.9	56.0	19.0	-	-	-	-	-	-
Taubitz et al, 2007	16	9	-	70.0	45	93.8	-	100.0	-	-	90.0	-	-	-	-	-	Mauritius, India, La Réunion, Malaysia, Seychelles, Madagascar, Indonesia
Total-	5702	2002	453	51.5	44	33.3	9.5	7.9	20.3	17.4	9.9	4.1	2.7	0.7	0.0	0.3	

^{*} Values are the percentage, unless indicated otherwise. CHIK-CIR = chikungunya virus disease chronic inflammatory rheumatism; IgM = immunoglobulin M; IgG = immunoglobulin G; MCP = metacarpophalangeal; DIP = distal interphalangeal; RF/ACPA = rheumatoid factor and anti-citrullinated protein antibody; ICUN = imported cases from unspecified origin. † If travel history was taken, the origin of patients is specified.

ABX and Chlamydia Clearance

	Combination An [17 PBMC +; 10 S	ntibiotics (n=27) synovial Tissue +]	Placebo (n=15) [10 PBMC +; 5 Synovial Tissue +]			
	Screening PCR	Month 6 PCR	Screening PCR	Month 6 PCR		
PBMC + for Ct, no.	12	3	7	5		
PBMC + for Cpn, no.	3	2	2	1		
PBMC + for Ct & Cpn, no.	2	0	1	1		
PBMC Clearance at Month 6, no. (%)	n/a	12/17 (71%)	n/a	3/10 (30%)		
Synovial Tissue + for Ct, no.	6	2 of 4	3	0 of 1		
Synovial Tissue + for Cpn, no.	3	0 of 2	1	TNP		
Synovial Tissue + for Ct & Cpn, no.	1	TNP	1	TNP		
Synovial tissue Clearance at Month 6, no. (%)	n/a	4/6 (66%)	n/a	0/1 (0%)		

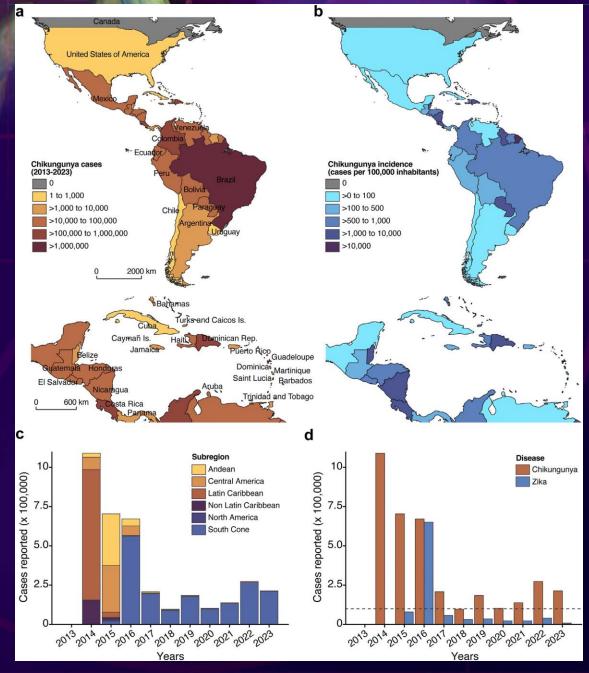


Figure 2. Risks of Incident Autoimmune and Autoinflammatory Disease Outcomes in the COVID-19 Cohort Compared With the Control Cohort

	Incidence rate, No. eve	ents/person-year		Favors	Favors			
Outcome	COVID-19	Control group	aHR (95% CI)	lower risk	higher risk			
Autoimmune/autoinflammatory disc	orders							
Alopecia areata	11.79 (135/114542)	9.48 (1907/2012295)	1.12 (1.05-1.19)		-			
Alopecia totalis	1.21 (14/116054)	0.60 (123/2036903)	1.74 (1.39-2.17)					
Psoriasis	5.40 (62/114856)	5.09 (1025/2013810)	1.00 (0.91-1.09)	-	_			
Vitiligo	2.59 (30/115768)	2.30 (467/2032049)	1.04 (0.91-1.19)	-	-			
ANCA-associated vasculitis	0.26 (3/116137)	0.10 (21/2038149)	2.76 (1.64-4.65)					
Behçet disease	0.34 (4/116008)	0.38 (78/2036137)	0.79 (0.56-1.11)					
Crohn disease	1.03 (12/116063)	0.52 (106/2036833)	1.68 (1.31-2.15)					
Ulcerative colitis	1.12 (13/115873)	1.07 (21/2034322)	1.04 (0.86-1.26)	_	-			
Rheumatoid arthritis	16.92 (190/112321)	15.56 (3068/1971486)	1.02 (0.97-1.08)					
Adult-onset Still disease	0.09 (1/116137)	0.08 (17/2038152)	1.18 (0.63-2.23)		•			
Polymyositis	0.09 (1/116141)	0.10 (21/2038049)	0.63 (0.30-1.31)					
Systemic lupus erythematosus	0.52 (6/115992)	0.92 (188/2035386)	0.47 (0.36-0.61)					
Systemic sclerosis	0.09 (1/116119)	0.15 (31/2037867)	0.99 (0.58-1.69)					
Sjögren syndrome	1.29 (15/115956)	1.53 (312/2034400)	0.85 (0.71-1.00)	-				
Ankylosing spondylitis	1.99 (23/115821)	1.86 (379/2032445)	1.00 (0.87-1.16)	\dashv	_			
Sarcoidosis	0.26 (3/116132)	0.14 (29/2037948)	1.59 (1.00-2.52)		-			
Positive control outcomes								
Myocardial infarction	4.15 (48/115684)	3.38 (685/2029628)	1.31 (1.18-1.45)		-8-			
Congestive heart failure	31.10 (352/113190)	18.02 (3580/1986762)	1.60 (1.54-1.68)		•			
Stroke	24.24 (273/112637)	20.15 (3983/1976716)	1.28 (1.23-1.34)		-			
Negative control outcomes								
Epidermal cyst	18.45 (211/114386)	19.99 (4010/2005922)	0.90 (0.86-0.94)					
Tympanic membrane perforation	1.99 (23/115847)	2.06 (418/2033487)	0.97 (0.85-1.12)	-	_			
Trauma of multiple sites	30.47 (346/113 544)	33.65 (6709/1993987)	0.89 (0.86-0.92)					
				0.220	1 2 4 95% CI)			